Conversionless Mathematical Operations on Roman Numerals

Gustek

October 17, 2025

I. Introduction

This paper presents algorithms to compute the result of basic mathematical operations on Roman numerals without converting them to (and then from) base 10 numbers.

II. Addition

Let us define a function $M = \{(\text{IV}, \text{IIII}); (\text{IX}, \text{VIIII}); (\text{XL}, \text{XXXX}); (\text{XC}, \text{LXXXX}); (\text{CD}, \text{CCCC}); (\text{CM}, \text{DCCCC})\}$ and $E = (\text{IIIII}, \text{V}); (\text{VV}, \text{X}); (\text{XXXXX}, \text{L}); (\text{LL}, \text{C}); (\text{CCCCC}, \text{D}); (\text{DD}, \text{M})\}$ with M(x) = x and E(x) = x for all other values. \tilde{M} is defined as $\tilde{M}(x) = x$ if M(x) = x and $\tilde{M}(x) = \tilde{M}(M(x))$ else. \tilde{E} is defined in a similar fashion.

The algorithm to compute z = x + y is as follows:

1
$$x' \leftarrow \tilde{M}(x)$$

2 $y' \leftarrow \tilde{M}(y)$
3 $z' \leftarrow group(cat(x,y))$
4 $z \leftarrow \tilde{M}^{-1}(\tilde{E}(z'))$

Where cat is the concatenation function and group groups individual components of a number together. We describe the operation of the algorithm for the computation of z = xLIX + LXI (49 + 61):

operation	line
$x' \leftarrow M(\text{XLIX}) = \text{XXXXVIIII}$	1
$y' \leftarrow M(LXI) = LXI$	2
cat(xxxxviiii, Lxi) = xxxxviiii.Lxi	3
$z' \leftarrow group(xxxxviiii.lxi) =$	3
LXXXXXVIIIII	
E(LXXXXXVIIIII) = LLVV	4
$z \leftarrow E(LLVV) = CX$	4

We thus get $z \leftarrow cx$ (110).

III. Substraction

The algorithm for substraction is slightly more complex than the one for addition, as it involves more conditional expansions/reductions. The algorithm to compute z = x - y where x > y (where > is the natural order on Roman numerals) is setup by defining x' and y' to be respectively $\tilde{M}(x)$ and $\tilde{M}(y)$. Let the function v(x) turn a Roman numeral $d_1d_2...d_n$ into the vector $(d_1, d_2, ..., d_n)$. We also define $\overline{x} = v(x')$ and $\overline{y} = v(y')$. The core of the algorithm is as follows:

1 while
$$\overline{y} \neq ()$$

2 $-m_x \leftarrow \min(\overline{x})$
3 $-m_y \leftarrow \min(\overline{y})$
4 $-\operatorname{if} m_y \in \overline{x}$
5 $-\overline{y} \leftarrow \overline{y} - m_y$
6 $-\overline{x} \leftarrow \overline{x} - m_y$
7 $-\operatorname{else} \operatorname{if} m_y < m_x$
8 $-\overline{x} \leftarrow E^{-1}(\overline{x})$
9 $-\operatorname{else}$
10 $-\operatorname{if} E(\overline{x}) \neq \overline{x}$
11 $-\overline{x} \leftarrow E(\overline{x})$
12 $-\operatorname{else}$
13 $-\overline{y} \leftarrow E^{-1}(\overline{y})$
14 $z \leftarrow \tilde{M}^{-1}(\tilde{E}(\overline{x}))$

We describe the operation of the algorithm for the computation of z = xx - xviii (20 - 18). We thus have $\overline{x} = (x, x)$ and $\overline{y} = (x, v, i, i, i)$. We write the vectors as standard numerals for the sake of conciseness. The algorithms runs as follows:

operation	m_{χ}	m_y	line
$\overline{x} \leftarrow E^{-1}(xx) = vvvv$	X	I	8
$\overline{x} \leftarrow E^{-1}(vvvv) = 20i$	v	I	8
$\overline{y} \leftarrow xvii$	I	I	5
$\overline{x} \leftarrow 19i$	I	I	6
$\overline{v} \leftarrow xvi$	I	I	5

operation	m_{χ}	m_y	line
$\overline{x} \leftarrow 18i$	I	I	6
$\overline{y} \leftarrow xv$	I	I	5
$\overline{x} \leftarrow 171$	I	I	6
$\overline{x} \leftarrow vvvii$	I	V	11
$\overline{y} \leftarrow x$	v	V	5
$\overline{x} \leftarrow \text{VVII}$	v	v	6
$\overline{x} \leftarrow XII$	V	X	11
$\overline{y} \leftarrow ()$	X	X	5
$\overline{x} \leftarrow II$	X	X	6
$z \leftarrow II$	I		14

We thus get $z \leftarrow II(2)$.

IV. Multiplication

Roman numerals multiplication can be achieved through matrix multiplication of digits vectors. The algorithm to compute z = xy is as follows:

$$1 \quad x' \leftarrow \tilde{M}(x)$$

$$2 \quad y' \leftarrow \tilde{M}(y)$$

$$3 \quad \overline{x} \leftarrow v(x')$$

$$4 \ \overline{y} \leftarrow v(y')$$

5
$$\overline{z} \leftarrow \overline{x} \times \overline{y}^{\perp}$$

6
$$z' \leftarrow group(cat(\overline{z}))$$

7
$$z \leftarrow \tilde{M}^{-1}(\tilde{E}(z'))$$

The matrix product on line 5 uses the following π function for component multiplication:

	I	V	X	L	C	D	M
I	I	V	X	L	C	D	M
v	v	XXV	L	CCL	D	MMD	5м
X	X	L	C	D	M	5м	10м
L	L	CCL	D	MMD	5м	25м	50м
C	C	D	M	5м	10м	50м	100м
D	D	MMD	5м	25м	50м	250м	500м
M	M	5м	10м	50м	100м	500м	1000м

We describe the operation of the algorithm for the computation of $z = \text{XLIII} \cdot \text{XII} (43 \cdot 12)$:

operation	line
$x' \leftarrow M(XLIII) = XXXXIII$	1

operation	line
$y' \leftarrow M(xII) = xII$	2
$\overline{x} \leftarrow (x, x, x, x, x, I, I, I)$	3
$\overline{y} \leftarrow (x, I, I)$	4
$\overline{z} \leftarrow \overline{y}^{\perp} \times \overline{x} = \begin{pmatrix} c & c & c & c & x & x \\ x & x & x & i & i & i \\ x & x & x & i & i & i \end{pmatrix}$	5
$cat(\overline{z}) = ccccxxx.xxxxiii.xxxxiii$	6
$z' \leftarrow$	6
group(ccccxxx.xxxxxiii.xxxxiii) =	
CCCCXXXXXXXXXXIIIIII	
E(CCCCXXXXXXXXXXIIIIII) = CCCCLLXVI	7
E(CCCCLLXVI) = CCCCCXVI	7
$z \leftarrow E(\text{CCCCXVI}) = \text{DXVI}$	7

We thus get $z \leftarrow \text{DXVI}$ (516).

V. Division

We do not define a specific algorithm for (Euclidean) division here, as it can be reduced to substractions and the introduction of a trivial order on Roman numerals.