
Conversionless Mathematical Operations on Roman Numerals

Gustek

October 17, 2025

I. Introduction
This paper presents algorithms to compute the
result of basic mathematical operations on Roman
numerals without converting them to (and then
from) base 10 numbers.

II. Addition
Let us define a function 𝑀 = {(iv, iiii); (ix, viiii);
(xl, xxxx); (xc, lxxxx); (cd, cccc); (cm,dcccc))
and 𝐸 = (iiiii, v); (vv, x); (xxxxx, l); (ll, c);
(ccccc, d); (dd, m)} with 𝑀(𝑥) = 𝑥 and 𝐸(𝑥) =
𝑥 for all other values. 𝑀̃ is defined as 𝑀̃(𝑥) =
𝑥 if 𝑀(𝑥) = 𝑥 and 𝑀̃(𝑥) = 𝑀̃(𝑀(𝑥)) else. 𝐸̃ is
defined in a similar fashion.

The algorithm to compute 𝑧 = 𝑥 + 𝑦 is as fol0
lows:

1 𝑥′ ← 𝑀̃(𝑥)
2 𝑦′ ← 𝑀̃(𝑦)
3 𝑧′ ← 𝑔𝑟𝑜𝑢𝑝(𝑐𝑎𝑡(𝑥, 𝑦))
4 𝑧 ← 𝑀̃−1(𝐸̃(𝑧′))

Where 𝑐𝑎𝑡 is the concatenation function and
𝑔𝑟𝑜𝑢𝑝 groups individual components of a num0
ber together. We describe the operation of the
algorithm for the computation of 𝑧 = xlix + lxi
(49 + 61):

operation line
𝑥′ ← 𝑀(xlix) = xxxxviiii 1
𝑦′ ← 𝑀(lxi) = lxi 2
𝑐𝑎𝑡(xxxxviiii, lxi) = xxxxviiii.lxi 3
𝑧′ ← 𝑔𝑟𝑜𝑢𝑝(xxxxviiii.lxi) =
lxxxxxviiiii

3

𝐸(lxxxxxviiiii) = llvv 4
𝑧 ← 𝐸(llvv) = cx 4

We thus get 𝑧 ← cx (110).

III. Substraction
The algorithm for substraction is slightly more
complex than the one for addition, as it involves
more conditional expansions/reductions. The al0
gorithm to compute 𝑧 = 𝑥 − 𝑦 where 𝑥 > 𝑦
(where > is the natural order on Roman numerals)
is setup by defining 𝑥′ and 𝑦′ to be respec0
tively 𝑀̃(𝑥) and 𝑀̃(𝑦). Let the function 𝑣(𝑥)
turn a Roman numeral 𝑑1𝑑2…𝑑𝑛 into the vector
(𝑑1, 𝑑2, …, 𝑑𝑛). We also define 𝑥 = 𝑣(𝑥′) and 𝑦 =
𝑣(𝑦′). The core of the algorithm is as follows:

1 while 𝑦 ≠ ()
2 — 𝑚𝑥 ← min(𝑥)
3 — 𝑚𝑦 ← min(𝑦)
4 — if 𝑚𝑦 ∈ 𝑥
5 —— 𝑦 ← 𝑦 − 𝑚𝑦

6 —— 𝑥 ← 𝑥 − 𝑚𝑦

7 — else if 𝑚𝑦 < 𝑚𝑥

8 —— 𝑥 ← 𝐸−1(𝑥)
9 — else

10 —— if 𝐸(𝑥) ≠ 𝑥
11 ——— 𝑥 ← 𝐸(𝑥)
12 —— else
13 ——— 𝑦 ← 𝐸−1(𝑦)
14 𝑧 ← 𝑀̃−1(𝐸̃(𝑥))

We describe the operation of the algorithm for the
computation of 𝑧 = xx − xviii (20 0 18). We thus
have 𝑥 = (x, x) and 𝑦 = (x, v, i, i, i). We write the
vectors as standard numerals for the sake of con0
ciseness. The algorithms runs as follows:

operation 𝑚𝑥 𝑚𝑦 line
𝑥 ← 𝐸−1(xx) = vvvv x i 8
𝑥 ← 𝐸−1(vvvv) = 20i v i 8
𝑦 ← xvii i i 5
𝑥 ← 19i i i 6
𝑦 ← xvi i i 5



operation 𝑚𝑥 𝑚𝑦 line
𝑥 ← 18i i i 6
𝑦 ← xv i i 5
𝑥 ← 17i i i 6
𝑥 ← vvvii i v 11
𝑦 ← x v v 5
𝑥 ← vvii v v 6
𝑥 ← xii v x 11
𝑦 ← () x x 5
𝑥 ← ii x x 6
𝑧 ← ii i 14

We thus get 𝑧 ← ii (2).

IV. Multiplication
Roman numerals multiplication can be achieved
through matrix multiplication of digits vectors.
The algorithm to compute 𝑧 = 𝑥𝑦 is as follows:

1 𝑥′ ← 𝑀̃(𝑥)
2 𝑦′ ← 𝑀̃(𝑦)
3 𝑥 ← 𝑣(𝑥′)
4 𝑦 ← 𝑣(𝑦′)
5 𝑧 ← 𝑥 × 𝑦⊥

6 𝑧′ ← 𝑔𝑟𝑜𝑢𝑝(𝑐𝑎𝑡(𝑧))
7 𝑧 ← 𝑀̃−1(𝐸̃(𝑧′))

The matrix product on line 5 uses the following 𝜋
function for component multiplication:

i v x l c d m
i i v x l c d m
v v xxv l ccl d mmd 5m
x x l c d m 5m 10m
l l ccl d mmd 5m 25m 50m
c c d m 5m 10m 50m 100m
d d mmd 5m 25m 50m 250m 500m
m m 5m 10m 50m 100m 500m 1000m

We describe the operation of the algorithm for the
computation of 𝑧 = xliii ⋅ xii (43 ⋅ 12):

operation line
𝑥′ ← 𝑀(xliii) = xxxxiii 1

operation line
𝑦′ ← 𝑀(xii) = xii 2
𝑥 ← (x, x, x, x, i, i, i) 3
𝑦 ← (x, i, i) 4

𝑧 ← 𝑦⊥ × 𝑥 = (
𝑐
𝑥
𝑥

𝑐
𝑥
𝑥

𝑐
𝑥
𝑥

𝑐
𝑥
𝑥

𝑥
𝑖
𝑖

𝑥
𝑖
𝑖

𝑥
𝑖
𝑖
) 5

𝑐𝑎𝑡(𝑧) = ccccxxx.xxxxiii.xxxxiii 6
𝑧′ ←
𝑔𝑟𝑜𝑢𝑝(ccccxxx.xxxxiii.xxxxiii) =
ccccxxxxxxxxxxxiiiiii

6

𝐸(ccccxxxxxxxxxxxiiiiii) = ccccllxvi 7
𝐸(ccccllxvi) = cccccxvi 7
𝑧 ← 𝐸(cccccxvi) = dxvi 7

We thus get 𝑧 ← dxvi (516).

V. Division
We do not define a specific algorithm for (Eu0
clidean) division here, as it can be reduced to
substractions and the introduction of a trivial order
on Roman numerals.


	Introduction
	Addition
	Substraction
	Multiplication
	Division

